Weitere Formeln

Die folgenden Formeln folgen nach längeren Termumformungen aus $\alpha + \beta + \gamma = 180^\circ$, gelten also allgemein für drei beliebige Winkel $\alpha$, $\beta$ und $\gamma$ mit der Eigenschaft $\alpha + \beta + \gamma = 180^\circ$, solange die in den Formeln vorkommenden Funktionen wohldefiniert sind (letzteres betrifft nur die Formeln, in denen Tangens und Kotangens vorkommen).
$\displaystyle \tan \alpha + \tan \beta + \tan \gamma$ $\displaystyle =$ $\displaystyle \tan \alpha \cdot \tan \beta \cdot \tan \gamma \,$  
$\displaystyle \cot \beta \cdot \cot \gamma + \cot \gamma \cdot \cot \alpha + \cot \alpha \cdot \cot \beta$ $\displaystyle =$ $\displaystyle 1$  
$\displaystyle \cot \frac{\alpha }{2}+ \cot \frac{\beta }{2}+ \cot \frac{\gamma }{2}$ $\displaystyle =$ $\displaystyle \cot \frac{\alpha }{2} \cdot \cot \frac {\beta }{2} \cdot \cot \frac{\gamma }{2}$  
$\displaystyle \tan \frac{\beta }{2}\tan \frac{\gamma }{2}+\tan \frac{\gamma }{2}\tan \frac{\alpha }{2}+\tan \frac{\alpha }{2}\tan \frac{\beta }{2}$ $\displaystyle =$ $\displaystyle 1$  


$\displaystyle \sin \alpha +\sin \beta +\sin \gamma$ $\displaystyle =$ $\displaystyle 4\cos \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}$  
$\displaystyle -\sin \alpha +\sin \beta +\sin \gamma$ $\displaystyle =$ $\displaystyle 4\cos \frac{\alpha }{2}\sin \frac{\beta }{2}\sin \frac{\gamma }{2}$  
$\displaystyle \cos \alpha +\cos \beta +\cos \gamma$ $\displaystyle =$ $\displaystyle 4\sin \frac{\alpha }{2}\sin \frac{\beta }{2}\sin \frac{\gamma }{2}+1$  
$\displaystyle -\cos \alpha +\cos \beta +\cos \gamma$ $\displaystyle =$ $\displaystyle 4\sin \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}-1$  


$\displaystyle \sin (2\alpha) +\sin (2\beta) +\sin (2\gamma)$ $\displaystyle =$ $\displaystyle 4\sin \alpha \sin \beta \sin \gamma \,$  
$\displaystyle -\sin (2\alpha) +\sin (2\beta) +\sin (2\gamma)$ $\displaystyle =$ $\displaystyle 4\sin \alpha \cos \beta \cos \gamma \,$  
$\displaystyle \cos (2\alpha) +\cos (2\beta) +\cos (2\gamma)$ $\displaystyle =$ $\displaystyle -4\cos \alpha \cos \beta \cos \gamma -1 \,$  
$\displaystyle -\cos (2\alpha) +\cos (2\beta) +\cos (2\gamma)$ $\displaystyle =$ $\displaystyle -4\cos \alpha \sin \beta \sin \gamma +1 \,$  
$\displaystyle \sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma$ $\displaystyle =$ $\displaystyle 2 \cos \alpha \cos \beta \cos \gamma +2 \,$  
$\displaystyle -\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma$ $\displaystyle =$ $\displaystyle 2 \cos \alpha \sin \beta \sin \gamma \,$  
$\displaystyle \cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma$ $\displaystyle =$ $\displaystyle -2 \cos \alpha \cos \beta \cos \gamma +1 \,$  
$\displaystyle -\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma$ $\displaystyle =$ $\displaystyle -2 \cos \alpha \sin \beta \sin \gamma +1 \,$  
$\displaystyle -\sin ^{2} (2\alpha) +\sin ^{2} (2\beta) +\sin ^{2} (2\gamma)$ $\displaystyle =$ $\displaystyle -2\cos (2\alpha) \,\sin (2\beta) \,\sin (2\gamma)$  
$\displaystyle -\cos ^{2} (2\alpha) +\cos ^{2} (2\beta) +\cos ^{2} (2\gamma)$ $\displaystyle =$ $\displaystyle 2\cos (2\alpha) \,\sin (2\beta) \,\sin (2\gamma) +1$