Produkte der Winkelfunktionen

Produkte der trigonometrischen Funktionen lassen sich mit folgenden Formeln berechnen:
$\displaystyle \sin x \; \sin y$ $\displaystyle =$ $\displaystyle \frac{1}{2}\Big(\cos (x-y) - \cos (x+y)\Big)$  
$\displaystyle \cos x \; \cos y$ $\displaystyle =$ $\displaystyle \frac{1}{2}\Big(\cos (x-y) + \cos (x+y)\Big)$  
$\displaystyle \sin x \; \cos y$ $\displaystyle =$ $\displaystyle \frac{1}{2}\Big(\sin (x-y) + \sin (x+y)\Big)$  
$\displaystyle \cos x \; \sin y$ $\displaystyle =$ $\displaystyle \frac{1}{2}\Big(- \sin (x-y) + \sin (x+y)\Big)$  
$\displaystyle \tan x \; \tan y$ $\displaystyle =$ $\displaystyle \frac{\tan x + \tan y}{\cot x + \cot y} = - \frac{\tan x - \tan y}{\cot x - \cot y}$  


$\displaystyle \cot x \; \cot y$ $\displaystyle =$ $\displaystyle \frac{\cot x + \cot y}{\tan x + \tan y} = - \frac{\cot x - \cot y}{\tan x - \tan y}$  
$\displaystyle \tan x \; \cot y$ $\displaystyle =$ $\displaystyle \frac{\tan x + \cot y}{\cot x + \tan y} = - \frac{\tan x - \cot y}{\cot x - \tan y}$  


$\displaystyle \sin x \; \sin y \; \sin z$ $\displaystyle =$ $\displaystyle \frac{1}{4} \Big(\sin (x+y-z) + \sin (y+z-x) + \sin (z+x-y) - \sin (x+y+z)\Big)$  
$\displaystyle \cos x \; \cos y \; \cos z$ $\displaystyle =$ $\displaystyle \frac{1}{4} \Big(\cos (x+y-z) + \cos (y+z-x) + \cos (z+x-y) + \cos (x+y+z)\Big)$  
$\displaystyle \sin x \; \sin y \; \cos z$ $\displaystyle =$ $\displaystyle \frac{1}{4} \Big(- \cos (x+y-z) + \cos (y+z-x) + \cos (z+x-y) - \cos (x+y+z)\Big)$  
$\displaystyle \sin x \; \cos y \; \cos z$ $\displaystyle =$ $\displaystyle \frac{1}{4} \Big(\sin (x+y-z) - \sin (y+z-x) + \sin (z+x-y) + \sin (x+y+z)\Big)$  

Für $\sin(2x)$ folgt außerdem:

$\displaystyle \sin x \; \cos x = \frac{1}{2} \sin (2x)$