Sinussatz

$\displaystyle \frac{b}{c}=\frac{\sin \beta }{\sin \gamma } \qquad
\frac{a}{b}...
... \qquad
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}=2r
$

$\displaystyle \ a : b : c = \sin \alpha : \sin \beta : \sin \gamma$   (Verhältnisgleichung)$\displaystyle $

   Wenn$\displaystyle \alpha = 90^\circ : \quad \sin \beta =\frac{b}{a} \qquad \sin \gamma =\frac{c}{a}$