Kosinussatz

\begin{displaymath}
\begin{array}{lcl}
a^{2}=b^{2}+c^{2}-2bc\ \cos \alpha& \Le...
... & \cos \gamma =\frac{a^{2}+b^{2}-c^{2}}{2ab}\\
\end{array}
\end{displaymath}

$\displaystyle a^{2}+bc\ \cos \alpha =b^{2}+ca\ \cos \beta =c^{2}+ab\ \cos \gamma =\frac{a^{2}+b^{2}+c^{2}}{2}$

Wenn $\alpha = 90^\circ$:

\begin{displaymath}
\begin{array}{lcl}
\cos \beta =\frac{c}{a} & ; & \cos \gamma =\frac{b}{a}\\
\end{array}
\end{displaymath}